Regression Coefficient and Autoregressive Order Shrinkage and Selection via Lasso

نویسندگان

  • Hansheng Wang
  • Guodong Li
  • Chih-Ling Tsai
چکیده

The least absolute shrinkage and selection operator (lasso) has been widely used in regression shrinkage and selection. In this article, we extend its application to the REGression model with AutoRegressive errors (REGAR). Two types of lasso estimators are carefully studied. The first is similar to the traditional lasso estimator with only two tuning parameters (one for regression coefficients and the other for autoregression coefficients). These tuning parameters can be easily calculated via a data driven method, but the resulting lasso estimator may not be fully efficient (Fan and Li, 2001). In order to overcome this limitation, we propose a second lasso estimator which uses different tuning parameters for each coefficient. We show that this modified lasso is able to produce the estimator as efficiently as the oracle. Moreover, we propose an algorithm for tuning parameter estimates to obtain the modified lasso estimator. Simulation studies demonstrate that the modified estimator is superior to the traditional one. One empirical example is also presented to illustrate the usefulness of lasso estimators. The extension of lasso to the autoregression with exogenous variables (ARX) model is briefly discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shrinkage estimation and variable selection in multiple regression models with random coefficient autoregressive errors

In this paper, we consider improved estimation strategies for the parameter vector in multiple regression models with first-order random coefficient autoregressive errors (RCAR(1)). We propose a shrinkage estimation strategy and implement variable selection methods such as lasso and adaptive lasso strategies. The simulation results reveal that the shrinkage estimators perform better than both l...

متن کامل

Variable Selection in Nonparametric and Semiparametric Regression Models

This chapter reviews the literature on variable selection in nonparametric and semiparametric regression models via shrinkage. We highlight recent developments on simultaneous variable selection and estimation through the methods of least absolute shrinkage and selection operator (Lasso), smoothly clipped absolute deviation (SCAD) or their variants, but restrict our attention to nonparametric a...

متن کامل

Penalized Regression Models with Autoregressive Error Terms

Penalized regression methods have recently gained enormous attention in statistics and the field of machine learning due to their ability of reducing the prediction error and identifying important variables at the same time. Numerous studies have been conducted for penalized regression, but most of them are limited to the case when the data are independently observed. In this paper, we study a ...

متن کامل

Variable Inclusion and Shrinkage Algorithms

The Lasso is a popular and computationally efficient procedure for automatically performing both variable selection and coefficient shrinkage on linear regression models. One limitation of the Lasso is that the same tuning parameter is used for both variable selection and shrinkage. As a result, it typically ends up selecting a model with too many variables to prevent over shrinkage of the regr...

متن کامل

Differenced-Based Double Shrinking in Partial Linear Models

Partial linear model is very flexible when the relation between the covariates and responses, either parametric and nonparametric. However, estimation of the regression coefficients is challenging since one must also estimate the nonparametric component simultaneously. As a remedy, the differencing approach, to eliminate the nonparametric component and estimate the regression coefficients, can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006